Oridnal Regression

Index

Index

Reference

Data

education_level3 N
High School or Less 2787
Undergraduate or Less 2886
Graduate 817

Plot

Plot using rmsb

Ordinal with MASS package

ordinal package

  education_level3
Predictors Odds Ratios CI p
High School or Less|Undergraduate or Less 65.59 38.30 – 112.30 <0.001
Undergraduate or Less|Graduate 1163.97 656.72 – 2063.04 <0.001
Gender: Female 1.48 1.30 – 1.69 <0.001
Wages or salary income
past 12 months (use
ADJINC to adjust WAGP to
constant dollars)
1.65 1.57 – 1.74 <0.001
Observations 3794
R2 Nagelkerke 0.120

rms package

             Effects              Response : education_level3 

 Factor               Low   High   Diff.  Effect  S.E.     Lower 0.95
 wagp_log             9.741 11.002 1.2611 0.63477 0.033425 0.56926   
  Odds Ratio          9.741 11.002 1.2611 1.88660       NA 1.76700   
 gender - Female:Male 1.000  2.000     NA 0.39414 0.065348 0.26606   
  Odds Ratio          1.000  2.000     NA 1.48310       NA 1.30480   
 Upper 0.95
 0.70028   
 2.01430   
 0.52222   
 1.68580   

glm package

  • Re-code education level into three variables
   lvl1    N
1:    1 3794
2:    0 3794
   y    N
1: 0 3469
2: 1 4119

Call:
glm(formula = y ~ 0 + factor(lvl1) + gender + wagp_log, family = binomial, 
    data = dtb, epsilon = 1e-19)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.0186  -0.6937   0.3632   0.6601   2.3706  

Coefficients:
              Estimate Std. Error z value Pr(>|z|)    
factor(lvl1)0  7.07199    0.27055  26.139  < 2e-16 ***
factor(lvl1)1  4.20227    0.25153  16.707  < 2e-16 ***
genderFemale  -0.39795    0.05944  -6.695 2.16e-11 ***
wagp_log      -0.50422    0.02433 -20.727  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 10519.2  on 7588  degrees of freedom
Residual deviance:  7274.7  on 7584  degrees of freedom
AIC: 7282.7

Number of Fisher Scoring iterations: 5
    Intercept          lvl1 gender=Female      wagp_log 
    7.0719899    -2.8697202    -0.3979506    -0.5042197 
             Effects              Response : y 

 Factor               Low   High   Diff.  Effect    S.E.     Lower 0.95
 lvl1                 0.000  1.000 1.0000 -2.869700 0.061800 -2.990800 
  Odds Ratio          0.000  1.000 1.0000  0.056715       NA  0.050245 
 wagp_log             9.741 11.002 1.2611 -0.635890 0.030679 -0.696020 
  Odds Ratio          9.741 11.002 1.2611  0.529470       NA  0.498570 
 gender - Female:Male 1.000  2.000     NA -0.397950 0.059440 -0.514450 
  Odds Ratio          1.000  2.000     NA  0.671700       NA  0.597830 
 Upper 0.95
 -2.748600 
  0.064018 
 -0.575760 
  0.562280 
 -0.281450 
  0.754690 
    Intercept          lvl1 gender=Female      wagp_log 
    7.0719899    -2.8697202    -0.3979506    -0.5042197 

Call:
glm(formula = y ~ lvl1 + gender + wagp_log, family = binomial, 
    data = dtb)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-3.0186  -0.6937   0.3632   0.6601   2.3706  

Coefficients:
             Estimate Std. Error z value Pr(>|z|)    
(Intercept)   7.07199    0.27054  26.140  < 2e-16 ***
lvl1         -2.86972    0.06180 -46.437  < 2e-16 ***
genderFemale -0.39795    0.05944  -6.695 2.16e-11 ***
wagp_log     -0.50422    0.02433 -20.728  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 10463.5  on 7587  degrees of freedom
Residual deviance:  7274.7  on 7584  degrees of freedom
AIC: 7282.7

Number of Fisher Scoring iterations: 4

Call:
glm(formula = y ~ gender + wagp_log + education_ge_undergraduate + 
    education_ge_graduate, family = binomial, data = dtb)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.17741  -1.17741   0.00008   1.17741   1.17741  

Coefficients:
                             Estimate Std. Error z value Pr(>|z|)
(Intercept)                 1.957e+01  2.439e+02   0.080    0.936
genderFemale               -1.029e-14  6.113e-02   0.000    1.000
wagp_log                    7.670e-16  2.478e-02   0.000    1.000
education_ge_undergraduate -1.957e+01  2.439e+02  -0.080    0.936
education_ge_graduate      -1.957e+01  2.990e+02  -0.065    0.948

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 10463.5  on 7587  degrees of freedom
Residual deviance:  6030.4  on 7583  degrees of freedom
AIC: 6040.4

Number of Fisher Scoring iterations: 18

brms package


SAMPLING FOR MODEL '4f0612a04dc8c8df8213a17f0a92f218' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000881 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 8.81 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 5.85857 seconds (Warm-up)
Chain 1:                5.17293 seconds (Sampling)
Chain 1:                11.0315 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL '4f0612a04dc8c8df8213a17f0a92f218' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000795 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 7.95 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 6.03269 seconds (Warm-up)
Chain 2:                5.6814 seconds (Sampling)
Chain 2:                11.7141 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL '4f0612a04dc8c8df8213a17f0a92f218' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000872 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 8.72 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 5.77304 seconds (Warm-up)
Chain 3:                5.70429 seconds (Sampling)
Chain 3:                11.4773 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL '4f0612a04dc8c8df8213a17f0a92f218' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000816 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 8.16 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 5.74178 seconds (Warm-up)
Chain 4:                5.93405 seconds (Sampling)
Chain 4:                11.6758 seconds (Total)
Chain 4: 
 Family: cumulative 
  Links: mu = logit; disc = identity 
Formula: education_level3 ~ gender + wagp_log 
   Data: dt (Number of observations: 3794) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1]     4.19      0.27     3.67     4.71 1.00     3582     2852
Intercept[2]     7.07      0.29     6.52     7.62 1.00     3451     2692
genderFemale     0.40      0.07     0.27     0.52 1.00     3642     3019
wagp_log         0.50      0.03     0.45     0.55 1.00     3615     2872

Family Specific Parameters: 
     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
disc     1.00      0.00     1.00     1.00   NA       NA       NA

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

SAMPLING FOR MODEL '62f7a71f4b20767090dcbea7f27d9b6c' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.001333 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 13.33 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 4.22494 seconds (Warm-up)
Chain 1:                4.22861 seconds (Sampling)
Chain 1:                8.45355 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL '62f7a71f4b20767090dcbea7f27d9b6c' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000779 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 7.79 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 4.39852 seconds (Warm-up)
Chain 2:                4.68376 seconds (Sampling)
Chain 2:                9.08228 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL '62f7a71f4b20767090dcbea7f27d9b6c' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000803 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 8.03 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 4.29013 seconds (Warm-up)
Chain 3:                4.25251 seconds (Sampling)
Chain 3:                8.54264 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL '62f7a71f4b20767090dcbea7f27d9b6c' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.00083 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 8.3 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 4.2281 seconds (Warm-up)
Chain 4:                4.15997 seconds (Sampling)
Chain 4:                8.38808 seconds (Total)
Chain 4: 
 Family: binomial 
  Links: mu = logit 
Formula: y ~ lvl1 + gender + wagp_log 
   Data: dtb (Number of observations: 7588) 
  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 4000

Population-Level Effects: 
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept        7.08      0.27     6.57     7.61 1.00     3304     2915
lvl1            -2.87      0.06    -2.99    -2.76 1.00     3486     3260
genderFemale    -0.40      0.06    -0.52    -0.28 1.00     4170     3333
wagp_log        -0.51      0.02    -0.55    -0.46 1.00     3636     3008

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).